Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Crit Care ; 26(1): 18, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-2295688

ABSTRACT

QUESTION: We evaluated whether the time between first respiratory support and intubation of patients receiving invasive mechanical ventilation (IMV) due to COVID-19 was associated with mortality or pulmonary sequelae. MATERIALS AND METHODS: Prospective cohort of critical COVID-19 patients on IMV. Patients were classified as early intubation if they were intubated within the first 48 h from the first respiratory support or delayed intubation if they were intubated later. Surviving patients were evaluated after hospital discharge. RESULTS: We included 205 patients (140 with early IMV and 65 with delayed IMV). The median [p25;p75] age was 63 [56.0; 70.0] years, and 74.1% were male. The survival analysis showed a significant increase in the risk of mortality in the delayed group with an adjusted hazard ratio (HR) of 2.45 (95% CI 1.29-4.65). The continuous predictor time to IMV showed a nonlinear association with the risk of in-hospital mortality. A multivariate mortality model showed that delay of IMV was a factor associated with mortality (HR of 2.40; 95% CI 1.42-4.1). During follow-up, patients in the delayed group showed a worse DLCO (mean difference of - 10.77 (95% CI - 18.40 to - 3.15), with a greater number of affected lobes (+ 1.51 [95% CI 0.89-2.13]) and a greater TSS (+ 4.35 [95% CI 2.41-6.27]) in the chest CT scan. CONCLUSIONS: Among critically ill patients with COVID-19 who required IMV, the delay in intubation from the first respiratory support was associated with an increase in hospital mortality and worse pulmonary sequelae during follow-up.


Subject(s)
COVID-19 , Critical Illness , Aged , Humans , Intubation, Intratracheal , Male , Prospective Studies , Respiration, Artificial , SARS-CoV-2
2.
J Med Case Rep ; 16(1): 140, 2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1765465

ABSTRACT

BACKGROUND: Neonates with severe acute respiratory syndrome coronavirus 2 infection are usually asymptomatic or have mild to moderate symptoms. Acute respiratory distress syndrome due to severe acute respiratory syndrome coronavirus 2 with respiratory insufficiency is rare. Therefore, information about the best intensive care strategy for neonates requiring mechanical ventilation is lacking. We report a neonatal case of severe acute respiratory distress syndrome, probably due to vertical transmission of severe acute respiratory syndrome coronavirus 2, complicated by Staphylococcus aureus sepsis. We aim to inform pediatric providers on the clinical course and acute management considerations in coronavirus disease-related neonatal acute respiratory distress syndrome. CASE PRESENTATION: A late preterm (gestational age 36 0/7 weeks) Caucasian girl was born from a severe acute respiratory syndrome coronavirus 2-positive mother and tested positive for severe acute respiratory syndrome coronavirus 2 at 19 hours after birth. She developed acute respiratory distress syndrome requiring intensive care admission and mechanical ventilation. The clinical course was complicated by S. aureus pneumonia and bacteremia. Multimodal management included well-established interventions for respiratory distress syndrome such as surfactant therapy, high-frequency oscillatory ventilation, and inhaled nitric oxide, combined with therapies extrapolated from adult care for severe acute respiratory syndrome coronavirus 2 patients such as dexamethasone, coronavirus disease 2019-specific immunoglobins, and prophylactic low-molecular-weight heparin. The neonate was successfully weaned from the ventilator and improved clinically. CONCLUSION: This case shows a rare but serious neonatal severe acute respiratory syndrome coronavirus 2 infection, leading to severe acute respiratory distress syndrome. Because of limited therapy guidelines for neonates, we suggest multimodal management with awareness of the possibility of S. aureus coinfection, to treat this age group successful.


Subject(s)
COVID-19 , Respiratory Distress Syndrome, Newborn , Respiratory Insufficiency , COVID-19/complications , COVID-19/therapy , Child , Female , Humans , Infant, Newborn , Respiratory Distress Syndrome, Newborn/etiology , Respiratory Distress Syndrome, Newborn/therapy , SARS-CoV-2 , Staphylococcus aureus
3.
JMA J ; 4(2): 148-162, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1226034

ABSTRACT

In 2020, the COVID-19 pandemic has had unprecedented impacts on various aspects of the world. Each academic society has published a guide and/or guidelines on how to cope with COVID-19 separately. As the one and only nationwide association of academic societies that represent medical science in Japan, JMSF has decided to publish the expert opinion to help patients and care providers find specifically what they want. This expert opinion is a summary of recommendations by many academic societies and will be updated when necessary. Patients that each academic society targets differ even though they suffer from the same COVID-19, and recommendations can be different in a context-dependent manner. Readers are supposed to be flexible and adjustable when they use this expert opinion.

4.
Crit Care ; 25(1): 106, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1136238

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic has caused unprecedented pressure on healthcare system globally. Lack of high-quality evidence on the respiratory management of COVID-19-related acute respiratory failure (C-ARF) has resulted in wide variation in clinical practice. METHODS: Using a Delphi process, an international panel of 39 experts developed clinical practice statements on the respiratory management of C-ARF in areas where evidence is absent or limited. Agreement was defined as achieved when > 70% experts voted for a given option on the Likert scale statement or > 80% voted for a particular option in multiple-choice questions. Stability was assessed between the two concluding rounds for each statement, using the non-parametric Chi-square (χ2) test (p < 0·05 was considered as unstable). RESULTS: Agreement was achieved for 27 (73%) management strategies which were then used to develop expert clinical practice statements. Experts agreed that COVID-19-related acute respiratory distress syndrome (ARDS) is clinically similar to other forms of ARDS. The Delphi process yielded strong suggestions for use of systemic corticosteroids for critical COVID-19; awake self-proning to improve oxygenation and high flow nasal oxygen to potentially reduce tracheal intubation; non-invasive ventilation for patients with mixed hypoxemic-hypercapnic respiratory failure; tracheal intubation for poor mentation, hemodynamic instability or severe hypoxemia; closed suction systems; lung protective ventilation; prone ventilation (for 16-24 h per day) to improve oxygenation; neuromuscular blocking agents for patient-ventilator dyssynchrony; avoiding delay in extubation for the risk of reintubation; and similar timing of tracheostomy as in non-COVID-19 patients. There was no agreement on positive end expiratory pressure titration or the choice of personal protective equipment. CONCLUSION: Using a Delphi method, an agreement among experts was reached for 27 statements from which 20 expert clinical practice statements were derived on the respiratory management of C-ARF, addressing important decisions for patient management in areas where evidence is either absent or limited. TRIAL REGISTRATION: The study was registered with Clinical trials.gov Identifier: NCT04534569.


Subject(s)
COVID-19/complications , Consensus , Delphi Technique , Respiratory Insufficiency/therapy , Respiratory Insufficiency/virology , Humans
5.
J Anaesthesiol Clin Pharmacol ; 36(Suppl 1): S21-S28, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-826891

ABSTRACT

The COVID-19 epidemic has put an enormous burden on the health-care system and the economy. The virus has very high infectivity and is crippling in patients developing severe disease. The disease caused by this infective agent, a novel RNA coronavirus (SARS-CoV-2), was named by the World Health Organization as COVID-19. SARS-CoV-2 usually enters the human body from the respiratory tract and gradually causes systemic disease. The disease is mild in 81% and severe in the balance. The virus causes multiorgan damage and primarily damages airway epithelium, small intestine epithelium, and vascular endothelium, which are organs with high angiotensin-converting enzyme (angiotensin-converting enzyme-2 [ACE2] expression). The most affected organ is the lungs, and the cardiovascular system follows it closely. Symptomatic hypoxic patients are initially treated with oxygen supplementation, but those with severe hypoxia need mechanical ventilation support. Patients with COVID-19 infection present as two phenotypes. The ventilation strategy should be based on the phenotype. The disease causes major hemodynamic disturbances in its invasion of the cardiovascular system. Strict personal protection protocols are needed to ensure the safety of health-care workers and nosocomial spread.

SELECTION OF CITATIONS
SEARCH DETAIL